
Polymer Physics (RPK-B, week 2)

1. Exercise 5.1 (R&C)
Note that v is negative so we are dealing with a partially collapsing chain
here. Partial, because |v| is still a lot smaller than b3 = 125 Å. We therefore
need the picture developed in section 3.3. Chains that are smaller than
the thermal blob size will be ideal and, those that are longer will take the
form of a dense globule of thermal blobs, for which we derived

Rgl ≈
b2

|v|1/3
N1/3 .

The number of monomers in a thermal blob is b6/v2 = 100, so that, not
surprisingly, the middle option is exactly at the boundary between the two
behaviors

(i) This chain is below the thermal blob size and therefore ideal, R ≈
b
√
N ≈ 35 Å.

(ii) Here we can choose which equation we use, as we are on the boundary
between the two behaviors. Both formulas give R ≈ 50 Å.

(iii) Now we need the dense globule of thermal blobs, and get R ≈ 108 Å.

2. Exercise 5.10 (R&C)

(i) r ≈ bn1/2

(ii) r ≈ bn1/2

(iii) r ≈ bn1/2 for n < gT, but r ≈ b2

|v|1/3n
1/3 for n > gT.

(iv) Chains in the supernatant (low ϕ) behave like in item (iii), but chains
in the precipitate (high ϕ) will be ideal (see discussion on page 176).

(v) All chains are ideal. r ≈ bn1/2.

(vi) Self-avoiding walk of thermal blobs: r ≈ b
(

v
b3

)2ν−1
nν .

(vii) r ≈ b
(

v
b3ϕ

)(ν−1/2)/(3ν−1)

n1/2.

(viii) All chains are ideal. r ≈ bn1/2.

3. Exercise 5.12 (R&C)

(i) The chain can be modeled as a sequence of Pincus blobs (tension
blobs). Inside such a blob, the chains essentially do not feel the
stretching force and they behave as unperturbed chains in semidilute
solution do, i.e.,

ξP ≈ b

(
v

b3ϕ

) ν−1/2
3ν−1

g
1/2
P . (1)

The pulling makes for a roughly linear chain of N/gP Pincus blobs
of size ξP, so that the ends are Rf = ξPN/gP apart. Using Eq. (1)
to eliminate gP from this, we get

Rf =
b2N

ξP

(
v

b3ϕ

) 2ν−1
3ν−1

=
R2

0

ξP
,

where we used Eq. (1) evaluated at gP = N to get the mean square
end-to-end distance of the unperturbed chain R0. This gives ξP =

1



R2
0/Rf and hence the number of Pincus blobs is Rf/ξP = (Rf/R0)

2.
Estimating the stretching free energy as kBT per Pincus blob, we get

F = kBT

(
Rf

R0

)2

.

This result is valid until Rf gets so large that the Pincus blob size
has shrunk to the correlation length. Demanding that ξP = R2

0/Rf

is larger than or equal to ξ from Eq. (5.23) in the book results (after
shuffling a bit with the exponent of ϕ) in

Rf ≤ R2
0ϕ

b

(
v

b3ϕ

) 2ν−1
3ν−1

.

(ii) Now the Pincus blobs are smaller than the correlation length so we
need to use Eq. (3.77) in the book to describe what happens inside
them, giving

ξP ≈ b
( v

b3

)2ν−1

gνP .

The calculation now follows the same arguments as the previous one.
It is convenient to use the size RF the swollen chain would have
had if there were no correlation effects to simplify the resulting ex-
pressions. The number of Pincus blobs turns out to still be given

by
(

Rf

RF

)1/(1−ν)

, as we also found in Eq. (3.36) in the book. The

fact that in this semidilute solution RF does not represent the un-
perturbed size only affects the prefactor of the free energy, not its
scaling with Rf . We therefore still have the free energy

F (Rf ) ≈ kBT

(
Rf

RF

)1/(1−ν)

.

This result is valid for Rf that are larger than the limit of the previous
section but smaller than the Rf at which the Pincus blob coincides
with the thermal blob. The latter happens when the number of
Pincus blobs is equal to the number of thermal blobsN/gT = Nv2/b6,
so that

Rf

RF
≤

(
Nv2

b6

)1−ν

.

(iii) In this case the chain conformations are ideal inside the Pincus blobs
so the result derived in Eq. (3.35) in the book applies without any
modifications. It is valid when Rf is larger than the upper bound
derived for the intermediate regime in the previous item.

(iv) The answer to this question has been merged in to the previous three
items.

Finally, a plot of the full solution to this exercise, showing the three
regimes for the case b = 1, v = 0.4, ϕ = 0.25, N = 1000.
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