Polymer solutions

difference across a membrane that separates the polymer solution from
pure solvent. The membrane allows solvent to pass freely but prevents
polymer from crossing. In Chapters 1 and 4, we learned that osmotic
pressure measurements in dilute solution determine polymer molar mass,
since osmotic pressure is k7 per chain. In this chapter, we learned that the
osmotic pressure measurement in semidilute solution provides another
means of determining the correlation length because the osmotic pressure
1s of the order of kT per correlation volume. The correlation length can
also be determined from the osmotic compressibility measured by scat-
tering at low wavevector [Eq. (1.91)].

5.8 Summary of polymer solutions

The phase diagram of polymer solutions i1s shown in Fig. 5.1, assuming the
usual case of B>01n Eq. (4.31) (with y = 4 + B/T a decreasing function of
temperature). In the poor solvent half of the diagram (at temperatures
below 6) the binodal separates the two-phase region from the two single-
phase regions.

There are dilute globules with size
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at very low concentrations (¢ < ¢') and concentrated solutions with
overlapping ideal chains for ¢ > ¢".

At temperatures near @ (for |T — 8]/0 < 1/+/N) there are two regions.
Dilute #-solutions with non-overlapping chains for ¢ < ¢35 ~ 1/v/N and
semidilute #-solutions with overlapping chains for ¢ > ¢s . Chains in both
f-regions have nearly 1deal coil size:

R~ Ry = bN'/2, (5.78)

At sufficiently high temperatures, the solvent 1s good, with three
regimes. There 1s a dilute good solvent regime at concentrations ¢ < ¢* ~
(b /v)® T3N3 with non-overlapping swollen chains whose size was
determined in Chapter 3:

Ry ~ b(b—‘;) TN A b(%)o'lgzvo-m. (5.79)

At concentrations ¢* < ¢ < ¢** ~v/b°, there is a semidilute good solv-
ent regime. In semidilute solution, the chain conformation is similar to
dilute solutions on small length scales, while the conformation is analog-
ous to polymer melts on large length scales. The overlapping chains in
semidilute solution are swollen at intermediate length scales between the
thermal blob size and the correlation length £ <r < € and 1deal at smaller
(r < &7) and larger (r > €) length scales. The chain size in semidilute solu-
tions 1in a good solvent decreases weakly as the concentration 1s increased:
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Concentrated solutions occur above the concentration ¢** at which the
thermal blob size and the correlation length coincide (at ¢ = ¢** ~ v/bY).
Chains have nearly ideal statistics on all length scales in concentrated
solution. This regime is simply an extension of the semidilute ¢-solution
region to higher temperatures (see Fig. 5.1).

Semidilute and concentrated solutions are characterized by a correla-
tion length &, the scale at which a given chain starts to find out about other
chains. This correlation length 1s
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in good solvents, and
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in semidilute @ and concentrated solutions. The correlation length is the
average distance between segments on neighbouring chains and 1s inde-
pendent of the degree of polymerization. Inside the correlation blob, dilute
chain statistics apply, whereas the large-scale conformation of the chain 1s
that of a melt of correlation blobs. Hence, the chain size in semidilute
solution is always determined as a random walk of correlation blobs.

The semidilute good solvent predictions have been tested using SANS
on polystyrene solutions in carbon disulphide in Fig. 5.13, showing
remarkable agreement. Carbon disulphide was chosen for the solvent
because no deuterium labelling is needed since this solvent has no protons.
Apparently, CS, is an athermal solvent for polystyrene, since the radius of
gyration continues to decrease all the way to the melt.

The correlation length also determines the osmotic pressure to be of
order kT per blob:

kT
N£_3.
This equation holds for theta, good, and athermal solvents. Hence,

osmotic pressure or osmotic compressibility measurements provide a con-
venient means of measuring the correlation length in semidilute solutions.

I (5.83)

Problems
Section 5.2

5.1 Consider a dilute polymer solution with excluded volume v= —12.5 A? and
Kuhn monomer length »=35A. What is the root-mean-square end-to-end
distance of this polymer if the number of Kuhn monomers 1s
(i) N =507 (ii) N = 10%? (iii) N = 10*?

5.2 A solution is prepared using chains having N= 10* Kuhn monomers of
length h=4A, with Flory interaction parameter x=0.55 at volume

fraction ¢ =0.01.

(i) Will this solution remain homogeneous or phase separate?
(ii) What is the polymer volume fraction ¢" in the sediment?
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Correlation length £ and radius of
gyration R, for polystyrene in carbon
disuifide from M. Daoud et al.,
Macromolecules 8, 804 (1975). Radius of
gyration data (open squares

M=1.14 x 10° gmol™ ') above

¢ =0.1 gml™! were fit to a power law
with slope — 0.12 that agrees well with
the scaling prediction [Eq. (5.80)]}. The
correlation length is independent of
molar mass (filled circles
M=2.1x10%gmol ", filled triangles
M =6.5x 10° gmol™', open circles

M =5 x10°gmol ') and the power law
slope of — 0.76 for all data agrees well
with scaling prediction [Eq. (5.81)]. Note
that ¢ = 1.06 gmL ™" corresponds to a
polystyrene melt.
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(i11) What is the root-mean-square end-to-end distance of the polymer in the
sediment?

(iv) What is the polymer volume fraction ¢’ in the supernatant?

(v) What is the root-mean-square end-to-end distance of the polymer in the

supernatant?
(vi) What 1s the volume fraction within the globule in the supernatant?

Section 5.3

5.3 Consider a polymer solution with N = 10° Kuhn monomers of length =7 A.
and Flory interaction parameter y = 0.45 at volume fraction ¢ =0.025.

(1) Do you expect this solution to stay homogeneous or to phase separate?

Explain.

(1) What 1s the polymer volume fraction ¢ in the sediment?

(11) What 1s the root-mean-square end-to-end distance of the polymer in the
sediment?

(tv) What 1s the polymer volume fraction ¢ in this solution?

(v) What 1s the root-mean-square end-to-end distance of the polymer in this
solution?

5.4 Consider three polymer solutions with Flory interaction parameter x = 0.49.
Kuhn length h=7A, and the number of Kuhn monomers: (a) N =100:
(b) N=1000; and (¢) N =10,000.

(1) How many monomers are in a thermal blob?
(11) Find the root-mean-square size of these polymers in dilute solutions.
(111) Find the overlap volume fraction for each of these three polymers.
(iv) What 1s the size of each of these polymers in solutions with volume
fraction ¢ =0.015?

5.5 Consider a polymer solution with Flory interaction parameter x = 0.4, con-
sisting of chains with N =10’ Kuhn monomers of length =3 A.

(1) What 1s the overlap volume fraction ¢* of these chains?
(11) What is the ¢** volume fraction for this solution?

What 1s the root-mean-square end-to-end distance of the polymer at volume

fraction

(1) ¢ =0.005?
(1v) ¢=0.05?
(v) 0=0.17
(vi) ¢=0.27

(vit) ¢ =0.4?7

5.6 Recall the two-dimensional size of an isolated real chain at the air-water
interface R=a"" b'*N* where a is the excluded area parameter, b is the
monomer size, and N 1s the degree of polymerization [Eq. (3.137)].

(1) What is the overlap surface coverage, o*?
(11) What is the thermal blob size, &7
(111) What 1s the correlation length £ at surface coverage o?
(1v) What 1s the size of the polymer R? Describe the conformation of the
chain at surface coverages o above the overlap coverage o*.
(v) What 1s the surface pressure (the two-dimensional analog of osmotic
pressure)?

5.7 Consider an athermal semidilute polymer solution (with excluded volume
v=125A3 and the Kuhn length »=5A) at volume fraction ¢$=0.01. The
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degree of polymerization of chainsis N = 10*. Estimate the osmotic pressure
of this solution at room temperature using

(1) mean-field theory;
(1) scaling theory.

5.8 Consider a semidilute polymer solution of chains with Ng monomers,
volume fraction ¢ and excluded volume v. A trace amount of longer
chemically identical chains with N4 monomers is added to the solution.
What is the size R of these A-chains, if they are assumed not to overlap
with each other and not to change the overall volume fraction ¢?

5.9 Derive Eqgs (5.23) and (5.26) for good solvents with 0 <v< b> from
Egs (5.38) and (5.39) for athermal solvents. Hint: Renormalize the monomer
to the thermal blob.

5.10 Plot the size r of a labelled section of n consecutive Kuhn monomers of a
chain for different regions of the diagram in Fig. 5.1. (i) Dilute #-solvent;
(ii) semidilute f-solvent; (iii) dilute poor solvent; (iv) two-phase region;
(v) concentrated poor solvent; (vi) dilute good solvent; (vi1) semidilute good
solvent; (viii) concentrated good solvent.

5.11 Plot the total number of Kuhn monomers belonging to all chains within a
small sphere of radius r with the centre at one monomer for different regions
of the diagram in Fig. 5.1. (i) Dilute #-solvent; (ii) semidilute ¢-solvent;
(i) dilute poor solvent; (iv) two-phase region; (v) concentrated poor sol-
vent; (vi) dilute good solvent; (vii) semidilute good solvent; (vii1) concen-
trated good solvent.

5.12 Stretching a chain in semidilute solution.

Consider a semidilute solution with volume fraction ¢ of chains with N
Kuhn monomers of length » and excluded volume v. Calculate the free
energy cost to stretch a chain to end-to-end distance R for the following

Cascs:

(i) Consider the case of relatively weak stretching, with the Pincus blob larger
than the correlation length.

(ii) Consider the case of intermediate stretching, with the Pincus blob smaller
than the correlation length but larger than the thermal blob.

(iii) Consider the case of strong stretching, with the Pincus blob smaller than
the thermal blob.
(iv) Over what range of end-to-end distance does each case apply?

Section 5.4

5.13 Consider a semidilute polymer solution at room temperature with Flory
interaction parameter x = 0.4, having N= 10° Kuhn monomers of length

b=3A.

(1) Calculate the size of a thermal blob &7

(ii) Calculate the size of a correlation blob £ as a function of polymer
volume fraction ¢. Note: separately consider two cases: £> &7 and
£<ér.

(iii) What is the concentration dependence of osmotic pressure II(¢) at room
temperature?

5.14 In order to better understand why the distance between three-body contacts
is of the order of the distance between monomers on neighbouring chains,
the problem can be generalized to ideal chains in d dimensions.

(i) Calculate the distance r, between n-body contacts in d dimensions.



